Tunemouth Software

TYNEMOUTH SOFTWARE 9 WAY D JOYSTICK PORT FOR RC2014

OVERVIEW

This card will add a 9 way D joystick port to an RC2014 system or a Minstrel $4^{\text {th }}$. It could also be used to add a second joystick port to a Minstrel 4D at a different address.

PARTS LIST

CAPACITORS - CERAMIC RATED 6.3V OR HIGHER
$2 \times 100 \mathrm{nF}$ axial (usually marked 100n or 104)

RESISTOR ARRAYS - ALL 1⁄W 5\% OR BETTER

2×8 commoned $10 \mathrm{~K} \Omega$ resistors (usually marked 9X-1-103LF)
1×8 commoned 10K Ω resistors (usually marked 9X-1-103LF) (Optional)
Dot on package and square pad on PCB indicate pin 1

SEMICONDUCTORS

$1 \times 74 \mathrm{HC540}$
$1 \times 74 \mathrm{HC} 688$

CONNECTORS / JUMPERS

1×40 way $0.1^{\prime \prime}$ right angled header
1×9 way D Male Right Angled PCB connector
2×20 way IC sockets (Optional, turned pin recommended if fitted)
2×80.1 jumper block + jumpers (Optional or fit wire links as required)

COMPONENT PLACEMENT

Tunnemoutl Solftware

RC2014 BUS CONNECTOR AND PULLUP
RC2014

Decoupling

Bus Pullup

The standard 40 pin RC2014 bus connector is used to access the address and data busses and control lines.

RC2014 is copyright RFC2795 Ltd. The 9 way D Joystick Interface is 'designed for RC2014'.

There is a position to fit an optional pullup resistor array to pull the data lines high. This will ensure that any reads of an unused IO or memory address will always return the value 0xFF. Without this, the value returned will not always be consistent and will depend on the system.

System	Value read from unused addresses without pullups	Value read with pullups
RC2014	Depends on system components	0xFF
Jupiter Ace	0×20 (Most of the time, but not consistent)	0xFF
Minstrel 4 ${ }^{\text {th }}$	0×58	0xFF
Minstrel 4D	$0 \times F F$	0xFF
Jupiter Ace Emulators	$0 \times F F$ or 0x20	-

This should not cause any issues if fitted, but may be left out if desired.

Tunnemoutl Solftware

ADDRESS DECODING

SCHEMATIC

OVERVIEW

A single 74HC688 magnitude comparator is used for the address decoding. This compares two 8 bit values and the output goes low if they match and the enable line is low.

The first value is the low 8 bits of the address bus. The second value is the desired device address. Enable is the IO request line from the RC2014 bus. The output will only go low if there is an IO operation at the selected address.

The resistor array will set this value to 0×00 if no jumpers are fitted. Jumpers should be fitted to set the desired address. Where a jumper is fitted, there will be a 1 in the address. This way any address from 0×00 to $0 x F F$ can be set. Wire links can be fitted in place of the jumper block for any address bits that should be a 1.

RECOMMENDED SETTING

To be compatible with the Boldfield joystick for the Jupiter Ace, address 0×01 should be used. To set this address, fit a jumper or wire link at position A0, as shown below.

Tunnemoutl Software

JOYSTICK

SCHEMATIC

OVERVIEW

A 74HC540 is used as a data buffer. This has two enable lines, both of which need to be low to activate the buffer. One is connected to the read signal on the RC2014 bus, the other to the decoded address. The buffer is only enabled for IO read operations at the selected address.

This is an inverting buffer, so will read as a 1 when the input is 0 and vice versa. The inputs are all pulled high, and will be active low when the switches inside the joystick are pressed. When this happens, the corresponding bit in the value read will be high. The default resting value is 0×00.

The original Boldfield joystick only used the lower 6 bits, here the extra 2 bits are used for Fire 2 and Fire 3.

Bit	Bitmask	Signal
$\mathbf{0}$	0×01	Up
$\mathbf{1}$	0×02	Down
$\mathbf{2}$	0×04	Right
$\mathbf{3}$	0×08	Left
$\mathbf{4}$	0×10	Unused
$\mathbf{5}$	0×20	Fire 1
$\mathbf{6}$	0×40	Fire 2
$\mathbf{7}$	0×80	Fire 3

The joystick connector is the standard 9 way D pinout used on Atari and Commodore systems, Kempston interfaces etc. (note this is not the same as the Atari 5200, Spectrum +2 or Sega Genesis).

Pin	Signal
$\mathbf{1}$	Up
$\mathbf{2}$	Down
$\mathbf{3}$	Left
$\mathbf{4}$	Right
$\mathbf{5}$	Fire 3
$\mathbf{6}$	Fire 1
$\mathbf{7}$	5 V (for autofire etc.)
$\mathbf{8}$	OV
$\mathbf{9}$	Fire 2

